Crystal Structure of the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ Compound. Relations with the ReO_{3}-type and the Fluorozirconate Glasses

J. P. LAVAL and B. FRIT ${ }^{\text {I }}$
Laboratoire de Chimie Minérale Structurale, UA-CNRS No. 320, Université de Limoges, 123, avenue A. Thomas, 87060 Limoges Cedex, France

AND J. LUCAS
Laboratoire de Chimie Minérale D, UA-CNRS No. 254, Université de
Rennes I, Campus de Beaulieu, avenue du Général Leclerc, 35042 Rennes
Cedex, France

Received December 23, 1986; and in revised form March 27, 1987

Abstract

The high temperature $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ phase crystallizes with triclinic symmetry and unit-cell parameters a $=24.256(9) \AA, b=15.383(6) \AA, c=9.057(3) \AA, \alpha=90.00^{\circ}(7), \beta=112.98^{\circ}(7), \gamma=90.57^{\circ}(5)$ (space group $P 1$ or $P \overline{\mathbf{1}}, Z=16$). In fact, this triclinic cell is a one-dimensional supercell ($a \times 4$) of a basic pseudomonoclinic subcell with $C 2 / c$ or $C c$ possible space groups. With this monoclinic subcell, an average structure (space group $C 2 / c$) has been solved and refined to a conventional $R=0.056$ for 411 independent reflections. The structure consists of a three-dimensional network of corner- and/or edge-sharing ZrF_{7} and BaF_{11} anionic polyhedra. It can also be described either as a regular succession along $0 y$ of identical $\mathrm{BaZr}_{2} \mathrm{~F}_{17}$ polyhedral layers sharing horizontal and oblique edges, or as a 2 D network of interpenetrated zig-zag chains of ZrF_{7} pentagonal bipyramids, joined together by twisted Ba sheets. Structural relations with the ReO_{3} type and with the corresponding fluorozirconate glasses are considered. © 1988 Academic Press, Inc.

I. Introduction

Since their first discovery in the binary system $\mathrm{BaF}_{2}-\mathrm{ZrF}_{4}$ (1) and in other various ternary $\mathrm{BaF}_{2}-\mathrm{MF}_{\mathrm{n}}-\mathrm{ZrF}_{4}$ systems (2), the ZrF_{4}-based glasses have received increasing attention, due to their high technological interest (3). However, the knowledge of their structure, absolutely essential for a good understanding-and then a mas-

[^0]tery-of their properties, is far from being perfect since numerous different models, often contradictory, have been proposed (4-13).
Just now, the lack of long-range order prevents any possibility of a direct interpretation of experimental data provided by modern techniques; so, the short-range order determination requires the prior elaboration of structural models to be compared with these experimental data.

The crystalline phases with composition

TABLE I
Crystallographic Characteristics of the α and $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ Phases

| | | $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ | |
| :--- | :---: | :---: | :---: | :---: |

close to those of the glasses, or formed during the crystallization of these glasses, are undoubtedly the best source of information for the elaboration of such models. For example, an accurate analysis of the crystal structure of $\alpha \mathrm{ZrF}_{4}$ (14) and of both α and $\beta \mathrm{BaZrF}_{6}(15,16)$ allowed a significant improvement of the structural knowledge of $\mathrm{BaF}_{2}-\mathrm{ZrF}_{4}$ glasses (compositional range: $50-75$ mole $\% \mathrm{ZrF}_{4}$) (5-7).

Our investigations within the $\mathrm{BaF}_{2}-\mathrm{ZrF}_{4}$ system (17) allowed us to synthesize and characterize, in addition to both α and $\beta \mathrm{BaZrF}_{6}$ polymorphs and other numerous stoichiometric and nonstoichiometric phases, the $\mathrm{BaZr}_{2} \mathrm{~F}_{10}$ compound. This latter is dimorphic and exhibits a reversible $\alpha \rightleftarrows \beta$ transition at $460^{\circ} \mathrm{C}$. At that time, the poor quality of the crystals discouraged us from undertaking the crystal structure determination of these two phases. Since then, numerous crystallization studies of fluorozirconate glasses have quasisystematically shown the formation of $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ crystals (18-27). So, the knowledge of the crystal structure of this phase has become vital and
in spite of unfavorable technical conditions, we undertook its determination.

The crystallographic characteristics of $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ as well as the $\alpha \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ ones, are reported in Table I.

All the XRD patterns show clearly that the true triclinic cell is a one-dimensional supercell ($a \times 4$) of a basic pseudomonoclinic subcell with $C 2 / c$ or $C c$ space group. Because of the subcell predominance and of the small size of the available crystals, the number of supercell reflections accurately measurable, was extremely low. Hence, we found a full structure analysis unrealistic and we have proceeded to a determination of an average structure with the monoclinic subcell and the most symmetrical $C 2 / c$ spacegroup.

II. Structure Determination

The selected crystal had a nearly spherical shape. 1088 diffracted intensities were collected on a Nonius CAD-3 automated diffractometer ($\mathrm{Mo} K_{\alpha}$ radiation, graphite monochromator, $\theta-2 \theta$ scan with $4^{\circ} \leq \theta \leq$ 35°). Because of the small size of the crystal ($\langle R\rangle \simeq 0.025 \mathrm{~mm}$) no absorption corrections had to be made ($\mu R=0.2$). After averaging equivalent (or more exactly pseudoequivalent) reflections and correcting for Lorentz-polarization effects, 411 independent intensities such as $I \geq 2.2 \sigma(I)$, were available for the structure determination with the SHELX-76 computing program (22). The scattering factors for Ba, Zr, and F atoms were those reported in "International Tables for X-ray Crystallography" (23). They have been corrected for anomalous dispersion effects.

The heavy atoms Ba and Zr have been located from the three-dimensional Patterson function. With these data, a Fourierdifference synthesis allowed the determination of the coordinates of fluorine atoms.

Refinements involving the coordinates and the isotropic thermal factors of all the atoms led then to a satisfactory value for the reliability factor: $R=0.075$. However, successive Fourier-difference maps exhibited electron density anomalies located in the neighborhood of the cationic sites, especially the zirconium ones. Although not negligible, they were not strong enough to justify a splitting of the corresponding positions. We have tried to eliminate them by introducing anisotropic thermal coefficients for the Zr atom. The best results (R $=0.056$) have been obtained by taking into account the thermal anisotropy of only the Zr atoms (Table II). It can be seen that, apart from the Ba atoms, the statistical superposition in an "average reduced cell" of crystallographically nonequivalent atoms leads to an important, but artificial, increase of their thermal factors. However, it is reasonable to think that the given values are not very different from the true ones and give a good idea of the real structure, the superstructure and the triclinic deformation being only a consequence of slight atomic displacements. Indeed the corresponding interatomic distances (Table III) do not exhibit any important anomalies.

TABLE II
Coordinates and Thermal Coefficients of the Different Atoms in the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ Ckystal Structure

Atom	Position	x	y	z	$B_{\text {iso }}$ $B_{\text {eq }}(\mathrm{Zr})^{d}$ $\left(\AA^{2}\right)$
Ba	$4 e$	0	$0.1729(2)$	$1 / 4$	$1.30(5)$
Zr	$8 f$	$0.1700(5)$	$0.4057(2)$	$0.1013(3)$	$1.79(8)$
$\mathrm{F}(1)$	$8 f$	$0.333(2)$	$0.046(1)$	$0.431(2)$	$1.6(2)$
$\mathrm{F}(2)$	$4 e$	0	$0.445(2)$	$1 / 4$	$2.4(4)$
$\mathrm{F}(3)$	$4 e$	0	$0.951(2)$	$1 / 4$	$4.8(6)$
$\mathrm{F}(4)$	$8 f$	$0.221(3)$	$0.112(1)$	$0.070(2)$	$3.5(4)$
$\mathrm{F}(5)$	$8 f$	$0.450(4)$	$0.197(2)$	$0.517(3)$	$5.9(6)$
$\mathrm{F}(6)$	$8 f$	$0.283(4)$	$0.312(2)$	$0.257(3)$	$5.9(5)$

[^1]TABLE III
Interatomic Distances (\AA) within the BaF_{1} and ZrF_{7} Polyhedra and Shortest

Cation-Cation Distances

$\mathrm{Ba}_{1}-\mathrm{F}(1)_{1}=2.83(1)$	$\mathrm{Zr}_{1}-\mathrm{F}()_{1}=2.16(1)$	$\mathrm{Ba}_{1}-\mathrm{Zr}_{1}=4.243(3)$
$\mathrm{Ba}_{1}-\mathrm{F}(3)_{1}=3.41(3)$	$\mathrm{Zr}_{1}-\mathrm{F}(1)_{2}=2.17(1)$	$\mathrm{Ba}_{1}-\mathrm{Zr}_{3}=4.534(4)$
$B a_{1}-\mathrm{F}(4)_{1}=2.65(2)$	$\mathrm{Zr}_{1}-\mathrm{F}(2)_{1}=2.08(1)$	$\mathrm{Ba}_{1}-\mathrm{Zr}_{4}=4.097(3)$
$\mathrm{Ba}_{1}-\mathrm{F}(5)_{1}=2.84(2)$	$\mathrm{Zr}_{1}-\mathrm{F}(3)_{2}=2.05(1)$	$\mathrm{Ba}_{1}-\mathrm{Zr}_{5}=4.540(4)$
$\mathrm{Ba}_{1}-\mathrm{F}(5)_{2}=2.87(2)$	$\mathrm{Zr}_{1}-\mathrm{F}(4)_{3}=1.93(1)$	$\mathrm{Zr}_{1}-\mathrm{Zr}_{2}=3.980(5)$
$\mathrm{Ba} 1_{1}-\mathrm{F}(6)_{1}=2.73(2)$	$\mathrm{Zr}_{1}-\mathrm{F}(5)_{1}=2.02(1)$	$\mathrm{Zr}_{1}-\mathrm{Zr}_{5}=3.617(5)$
	$\mathrm{Zr}_{1}-\mathrm{F}(6)_{3}=1.95(2)$	$\mathrm{Zr}_{2}-\mathrm{Zr}_{3}=3.854(5)$
		$\mathrm{Zr}_{3}-\mathrm{Zr}_{4}=5.352(6)$
$(\mathrm{Ba}-\mathrm{F})=2.78$	$\langle\mathrm{Zr}-\mathrm{F}\rangle=2.05$	$\mathrm{Ba}_{1}-\mathrm{Ba}_{2}=4.960(2)$
About Zr		About Ba

$F(1)_{1}-F(1)_{2}=2.38(3)$
$F(1)_{1}-F(2)_{1}=2.67(3)$
$F(1)_{1}-F(4)_{3}=2.89(3)$
$F(1)_{1}-F(5)_{1}=2.47(3)$
$F\left(1 h_{2}-F(2)_{1}=2.72(3)\right.$
$F(1)_{2}-F(3)_{2}=2.51(2)$
$F(1)_{2}-F(4)_{3}=2.93(2)$
$F(2)_{1}-F(3)_{2}=3.03(3)$
$F(2)_{1}-F(5)_{1}=2.97(3)$
$F(2)_{1}-F(6)_{3}=2.66(3)$
$F(3)_{2}-F(4)_{3}=2.85(2)$
$F(3)_{2}-F(6)_{3}=2.52(3)$
$F(4)_{3}-F(5)_{1}=2.75(3)$
$F(4)_{3}-F(6)_{3}=3.18(3)$
$F(5)_{1}-F(6)_{3}=2.33(3)$
$F(1)_{1}-F(3)_{1}=2.51(2)$ $\mathrm{F}(1)_{1}-\mathrm{F}(4)_{1}=3.23(2)$ $F(1)_{1}-\mathrm{F}(4)_{2}=3.51(3)$ $\mathrm{F}(1)_{1}-\mathrm{F}(5)_{1}=2.47(3)$ $\mathrm{F}(3)_{1}-\mathrm{F}(4)_{1}=3.50(3)$ $\mathrm{F}(4)_{1}-\mathrm{F}(5)_{2}=3.31(3)$ $\mathrm{F}(4)_{1}-\mathrm{F}(6)_{1}=3.46(3)$ $\mathrm{F}(5)_{1}-\mathrm{F}(5)_{2}=2.83(5)$ $F(5)_{1} \cdot F(6)_{1}=2.79(3)$ $\mathrm{F}(5)_{2}-\mathrm{F}(6)_{1}=2.91(3)$ $\mathrm{F}(5)_{2}-\mathrm{F}(6)_{2}=2.33(3)$
${ }^{a}$ Notations for atoms are those used in Fig. 2.

III. Description of the Structure

The unit-cell atomic content is shown, projected onto the (010) plane, in Fig. 1. The $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ structure is a three-dimensional network of corner- and/or edge-sharing ZrF_{7} and BaF_{11} anionic polyhedra in the respective proportion $2-1$. However, it also can be described as a regular succession along [010] of identical layers parallel to (010). One of these layers, corresponding to cations with $y \simeq 0.09,0.17$ is shown in Fig. 2.

1. Anionic Polyhedra (see Fig. 2 and Table III)

The Zr anionic polyhedron is a slightly distorted pentagonal bipyramid with $\mathrm{F}(1)_{1}$, $\mathrm{F}(5)_{1}, \mathrm{~F}(6)_{3}, \mathrm{~F}(3)_{2}, \mathrm{~F}(1)_{2}$ atoms as equatorial corners and $\mathrm{F}(2)_{1}, \mathrm{~F}(4)_{3}$ atoms as axial

Fig. 1. Projection (010) of the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ unit-cell content. Three successive cationic 4^{4} subcells are represented by dotted or dashed lines.
ones. The $\mathrm{Zr}-\mathrm{F}$ distances range from 1.93 to $2.17 \AA$, but the average distance $\langle\mathrm{Zr}-\mathrm{F}\rangle$ $=2.05 \AA$ is quite comparable with the usually observed values for sevenfold coordinated zirconium ($2.02-2.08 \AA$) (4). This polyhedron can be also described as an octahedron with one corner replaced by a $\mathrm{F}(5)_{1}-\mathrm{F}(6)_{3}$ edge.

The more complex BaF_{11} ployhedron can be considered as an irregular square antiprism whose two triangular faces $\left(\mathrm{F}(5)_{3}-\right.$ $F(1)_{3}-F(6)_{2}$ and $F(5)_{2}-F(1)_{1}-F(6)_{1}$ in Fig. 2) and a square one $\left(F(1)_{3}-F(4)_{1}-F(1)_{1}-F(4)_{2}\right.$
in Fig. 2) are each capped by an extra anion (respectively, $\mathrm{F}(5)_{4}, \mathrm{~F}(5)_{1}$, and $\mathrm{F}(3)_{1}$ in Fig. 2). However, the $\mathrm{Ba}-\mathrm{F}(3)_{1}$ distance is much longer than the other ones $\left(\mathrm{Ba}-\mathrm{F}(3)_{1}\right)=$ $3.41 \AA$ for an average $\langle\mathrm{Ba}-\mathrm{F}\rangle=2.78 \AA$), and the true Ba coordination must be considered as $[10+1]$.

2. Polyhedra Distribution in the (010) Planes

In the polyhedral layers parallel to (010), the cations are distributed in a $[\mathrm{Ba}-\mathrm{Zr}-\mathrm{Zr}]$ sequence along quasi-orthogonal [$\overline{101]}$ and

Fig. 2. A $\mathrm{BaZr}_{2} \mathrm{~F}_{17}$ layer of BaF_{11} and ZrF_{7} polyhedra.
[201] rows, so constituting a square 4^{4} network: this network is not perfectly planar since the Ba atoms (with $y=0.17$ for instance in Fig. 2) are shifted $1.2 \AA$ out of the Zr atom plane ($y=0.09$ in Fig. 2). In each layer, the polyhedra share only corners along [$\overline{\mathbf{1}} 01$] and alternately corners and edges along [201]. In this way, each ZrF_{7} polyhedron is bound to two identical polyhedra by corner-sharing, to one BaF_{11} polyhedron by edge-sharing and to one other BaF_{11} polyhedron by corner-sharing, and each BaF_{11} polyhedron is bound to four ZrF_{7} polyhedra, two by corner-sharing, two by edge-sharing. Logically each edge-sharing leads to a noticeable shortening of the $\mathrm{Ba}-\mathrm{Zr}$ distance ($4.24 \AA$ instead of $4.53 \AA$ for a corner-sharing bond).

3. Interlayer Bonding

The identical polyhedral layers stack another along [010] in such a way that the cationic 4^{4} subcells are not superposed but alternatively translated (see Fig. 1). If we take the original layer as the one with cations at $y=0.09$ and 0.17 , the upper layer, i.e., the one with cations at $y=0.33$, 0.41 , is shifted by a $\frac{1}{6} \mathrm{n}_{101}$ vector. The lower layer, the one with cations at $y=-0.09$ and -0.17 , is shifted by a $\frac{1}{6} \mathrm{n}_{201}$ vector.

As a consequence, in each layer, the BaF_{11} polyhedra are linked on one side to two BaF_{11} polyhedra by sharing in each case an oblique $\mathrm{F}(5)-\mathrm{F}(5)$ edge $\left(d \mathrm{Ba}_{1}-\mathrm{Ba}_{2}\right.$ $=4.96 \AA$) and to two ZrF_{7} polyhedra by sharing parallel and horizontal $F(5)-F(6)$

Fig. 3. Two perspective views of the 3D linking of BaF_{11} and ZrF_{7} polyhedra.
edges $\left(d \mathrm{Ba}_{1}-\mathrm{Zr}_{4}=4.10 \AA\right.$). On the opposite side the BaF_{11} polyhedra are linked to two other ZrF_{7} polyhedra (in the staggered position relative to the former ones) by sharing $\mathrm{F}(1)-\mathrm{F}(3)$ oblique edges $\left(d \mathrm{Ba}_{1}-\mathrm{Zr}_{5}\right.$ $=4.54 \AA$). The ZrF_{7} polyhedra are linked on one side to a BaF_{11} polyhedron by sharing an horizontal $F(5)-F(6)$ edge and on the opposite side both to another ZrF_{7} polyhedron by sharing an oblique $F(1)-F(1)$ edge ($d \mathrm{Zr}_{1}-\mathrm{Zr}_{5}=3.62 \AA$) and to a BaF_{11} polyhedron by sharing an oblique $\mathrm{F}(1)-\mathrm{F}(3)$ edge. Figure 3 gives perspective views of the layer packing along $0 y$ and of the 3D linking of polyhedra.

IV. Structural Relations with $\mathbf{R e O}_{3}$-Type Structures

As illustrated in Fig. 4, each polyhedral layer of the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ structure, formula $\mathrm{BaZr}_{2} \mathrm{~F}_{17}\left(M X_{5.67}\right)$, can be obtained from an ideal $\mathrm{BaZr}_{2} \mathrm{~F}_{12}\left(M X_{4}\right)$ layer of corner-sharing BaF_{6} and ZrF_{6} octahedra, characteristic of the ReO_{3} structure, by a one-sided substitution of the free octahedral corners by either a square face for the BaF_{6} octahedra or an edge for the ZrF_{6} octahedra. Such a substitution, in fact, replaces one of the two less dense 4^{4} anionic subcells (formula X for one $M X_{3}$ formula unit) of the ReO_{3} structure, by a slightly folded much more dense $3^{3} 4^{2}$ subcell ($M X_{2.67}$ formula) composed with the $F(5)$ and $F(6)$ anions at $y=0.19$, $0.20,0.30$, and 0.31 (see Fig. 2).

The change from the 3D network of cor-ner-sharing $M X_{6}$ octahedra, characteristic of the ReO_{3} structure, to the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10} 3 \mathrm{D}$ network of corner and/or edge-sharing $\mathrm{Zr} X_{7}$ and $\mathrm{Ba} X_{11}$ polyhedra, can be described in a formal way, by the following shear process, illustrated in Fig. 5 and involving three adjacent octahedra layers: (1) a central layer, as for instance the layer with cations at $y-0.09$ and 0.17 , (2) a lower layer translated by $\left(\frac{1}{2} \mathbf{n}_{011}\right)_{\mathrm{ReO}_{3}}$, which
changes the common corners into oblique common edges and removes the purely anionic 4^{4} subcell (formula X), and (3) an upper layer translated by $\left(\frac{1}{2} \mathbf{n}_{100}\right)_{\mathrm{ReO}_{3}}$, then removal of the $\mathrm{Ba} X_{6}$ free octahedral corners and substitution of edges parallel to $[010]_{\mathrm{ReO}_{3}}$ for the $\mathrm{Zr} X_{6}$ free corners, leading to a compaction of the anionic subcell from X to $X_{2.67}\left(3^{3} 4^{2}\right.$ anionic subceil).

The . . . $M X_{2}-X-M X_{2}-X .$. stacking sequence characteristic of the ReO_{3} structure is now replaced by the . . . $M X_{2}-M X_{2}-X_{2.67}$. . stacking sequence observed in $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$. Because of the large difference in size of Ba^{2+} and Zr^{4+} cations, such a process is only possible with a strictly ordered distribution of cations and with an important distortion of the anionic and cationic subcells within the ReO_{3}-type polyhedral layers. These distortions are actually observed in the $\beta \mathrm{BZr}_{2} \mathrm{~F}_{10}$ structure. They correspond in the main to a folding of the anionic planes, all the more important as these planes are dense, and to a shifting of Ba^{2+} and Zr^{4+} cations (indicated by arrows in Figs. 4 and 5) out of the ReO_{3}-basis plane (mean anionic plane) toward, respectively, the edges and square faces substituted for the original corners. This latter phenomenon, which is absolutely essential to the regularity of cation coordination polyhedra, is a common feature of all the known compounds derived from the ReO_{3} type by the creation (ordered or not) of an anion excess, either directly (i.e., with preservation of the cationic cubic subcell) or indirectly (i.e., by a crystallographic shear process).

As shown by the values reported in Table IV the displacement of cations out of the basic plane is all the more important as the cation size is large, and for a given cation the number of anions substituted for the original corner is high and the cationic cubic subcell is more distorted (crystallographic shear planes between ReO_{3} layers).

Fig. 4. Comparison of a $\mathrm{BaZr}_{2} \mathrm{~F}_{12}$ layer (ReO_{3} type) with a $\mathrm{BaZr}_{2} \mathrm{~F}_{17}$ layer ($\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ type).

Fig. 5. Transformation by a double shear process of the 3D network of corner-sharing octahedra characteristic of the ReO_{3} type into the 3D network of corner- and/or edge-sharing BaF_{11} and ZrF_{7} polyhedra characteristic of the $\beta \mathrm{BaZr} \mathrm{r}_{2} \mathrm{~F}_{10}$ crystal structure. Coordinates of cations are y ones.

V. Structural Relations with the Fluorozirconate Glasses

For fluorozirconate glasses with chemical compositions equal or close to $\mathrm{BaZr}_{2} \mathrm{~F}_{10}$, molecular dynamic calculations ($7,24,25$) have suggested the presence of ZrF_{7} or ZrF_{8} units and Angell has shown the particular stability of edge-sharing $\mathrm{ZrF}_{7}-\mathrm{ZrF}_{8}$ units, even in the molten state (7). Actually EXAFS data are in agreement
with seven- or eightfold coordinated Zr^{4+} cations (26). In addition recent X-ray diffusion experiments $(4,7)$ have revealed the presence, on radial electron distribution curves, of a $3.6-\AA$ peak, interpreted by Lucas (7) as characteristic of a

TABLE IV
Observed Cation Shifts Δ out of the ReO Basic Plane in Some Anion•Excess ReO_{3}-Related Structures

Phases (Ref.)	Cationic Subcell	Part substituted for the octahedron corner	$\Delta(\AA)$
$\mathrm{Zr}(\mathrm{F}, \mathrm{O})_{3.33}(27)$	Cubic	Edge	0.20
$\mathrm{Zr}_{0.8} \mathrm{Yb}_{0.2} \mathrm{~F}_{3.2} \mathrm{O}_{0.3}(28)$	Cubic CS	Edge	0.27
SmZrF7 (29)	$\left(\mathrm{In}_{100}\right)_{\mathrm{ReO}_{3}}$ Double CS	Triangular face	$\mathrm{Sm} \rightarrow 0.7$
$\beta \mathrm{BaZr} \mathrm{F}_{2} \mathrm{~F}_{10}$	$\left(\frac{1}{2} \boldsymbol{n}_{011}\right)_{\mathrm{ReO}_{3}}$ $\left(\frac{1}{2} n_{100}\right)_{\mathrm{ReO}_{3}}$	Edge Square face	$\begin{aligned} \mathrm{Zr} & \rightarrow 0.31 \\ \mathrm{Ba} & \rightarrow 1.54 \end{aligned}$
$\mathrm{Ba}_{2} \mathrm{ZrFF}_{8}(30)$	Cubic	Triangular face	$\left\{\begin{array}{l} \mathrm{Zr} \rightarrow 0.7 \\ \mathrm{Ba} \rightarrow 1.88 \end{array}\right.$

bridge with a very short $\mathrm{Zr}-\mathrm{Zr}$ distance as in the $\alpha \mathrm{ZrF}_{4}$ structure (15).

These results strongly suggest that the crystal structure of $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ is probably very close to the corresponding glass structure. So we have tried to extract parts of this structure that could be preserved, more or less distorted, in the glassy state. With increasing complexity we can distinguish the following units.

First Unit

The basic unit of the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ structure is undoubtedly the $\mathrm{Zr}_{2} \mathrm{~F}_{12}$ association of two edge-sharing ZrF_{7} polyhedra. This very stable unit which associates two very close Zr^{4+} cations ($d_{\mathrm{Zr}-\mathrm{Zr}}=3.62 \AA$) linked by a

bridge with long $\mathrm{Zr}-\mathrm{F}$ bonds (2.16 and 2.17 \AA) is also present in the $\alpha \mathrm{BaZrF}_{6}$ and the $\alpha \mathrm{ZrF}_{4}$ polymorphs and probably as proposed by Lucas (7), in the related glasses.

Second Unit

The $\mathrm{Zr}_{2} \mathrm{~F}_{12}$ basic units join together by corner-sharing to form infinite zig-zag chains of ZrF_{7} pentagonal bipyramids in-
volving Zr atoms from two successive $\mathrm{BaZr}_{2} \mathrm{~F}_{17}$ layers (e.g., Zr at $y=0.009$ and y $=-0.09$).

Two different kinds of chains can be distinguished. The first ones, schematically shown in Fig. 6a, are parallel to [$\overline{101]}\left(\mathbf{a}_{\mathrm{ReO}_{3}}\right)$ and are characterized by successive $3.62 \AA$ (edge-sharing) and $3.98 \AA$ (cornersharing) $\mathrm{Zr}-\mathrm{Zr}$ distances. The second ones, which are probably more stable since they associate $\mathrm{Zr}_{2} \mathrm{~F}_{12}$ units by a shorter cornershared $\mathrm{Zr}-\mathrm{Zr}$ distance ($3.85 \AA$), are parallel to [201] $\left(b_{\mathrm{ReO}_{3}}\right)$ and are shown in Fig. 6b.

Third Unit

In fact, the two kinds of zig-zag chains are interpenetrated and form a 2 D network, i.e., a $\mathrm{Zr}_{2} \mathrm{~F}_{10}$ double layer of corner- and edge-sharing ZrF_{7} pentagonal bipyramids. These double layers are linked to each other along [010] through the intermediary of twisted Ba sheets (e.g., Ba atoms at $y=$ $0.17,0.33$ for double layers with Zr atoms at, respectively, $y=-0.09,0.09$ and $y=$ $0.41,0.59$ as one can see in Figs. 3 and 5).

Glassy $\mathrm{BaZr}_{2} \mathrm{~F}_{10}$ is an isotropic material in which it has been proved that a given Zr atom is surrounded by one Zr at a short distance of $3.6 \AA$ and three other Zr atoms at $4.15 \AA$. By comparison, in $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$, one Zr atom has three Zr neighbors: one

Fig. 6. A double layer of ZrF_{7} pentagonal bipyramids (c) resulting from the interpenetration of zig-zag chains parallel to [101] (a) and [201] (b). The picture in the left upper corner shows the transformation of a ZrF_{6} octahedron into a ZrF_{7} pentagonal bipyramid by substituting an edge for a corner.
(edge-sharing) located at $3.62 \AA$ and two other (corner-sharing) located at 3.98 and 3.85 凡.

It is clear that the glass-crystal competition can be explained by the transformation of the 2D character of the $\left(\mathrm{Zr}_{2} \mathrm{~F}_{10}\right)^{2-}$ giant anion in the crystal to a 3D network in the glass due to the connection of the double layers through a mechanism which involves the formation of new $\mathrm{Zr}-\mathrm{F}-\mathrm{Zr}$ bonds. This network, due to the complexity and flexibility of the various connections, can exist without any periodicity; the Ba^{2+} ions are statistically distributed within the vitreous lattice. Differential thermal analysis experiments indicate that this vitreous form of $\mathrm{BaZr}_{2} \mathrm{~F}_{10}$ is highly thermodynamically unstable and tends to rearrange into a crystalline form dominated by strong ionic
interactions between the $\left(\mathrm{Zr}_{2} \mathrm{~F}_{10}\right)^{2-}$ double layers and the intervening distorted sheets of Ba^{2+} ions.

Conclusion

Though derived from the ReO_{3}-type by a compacting shear process, the $\beta \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ 3D network of BaF_{11} and ZrF_{7} polyhedra however remains relatively "open," as can be seen in Fig. 3. The strong units of the ZrF_{7} pentagonal bipyramids layers can surely be preserved in the glassy state, linked by Ba atoms in a more compact way than in the crystalline state, so justifying the higher densities surprisingly observed in this glassy state ($d \mathrm{BaZr}_{2} \mathrm{~F}_{10}$ (glass) \simeq $4.5-4.6, d \mathrm{BaZr}_{2} \mathrm{~F}_{10}($ crystal $\left.)=4.35\right)$.

References

1. M. Poulain, M. Poulain, and J. Lucas, Rev. Chim. Mineral. 16, 267 (1979).
2. M. Poulain, M. Poulain, J. Lucas, and P. Brun, Mater. Res. Bull. 10, 212 (1975).
3. For a review, see: Halide glasses, Mater. Sci. Forum 5-6 (1985).
4. R. Coupe, D. Louer, J. Lucas, and A. J. Leonard, J. Amer. Ceram. Soc. 66, 523 (1983).
5. Y. Kawamoto and T. Horisaka, J. Non-cryst. Solids 56, 39 (1983).
6. Y. Kawamoto and F. Sakaguchi, Bull. Chem. Soc. Japan 56, 2138 (1983).
7. J. Lucas, C. A. Angell, and S. Tamaddon, Mater. Res. Bull. 19, 945 (1984).
8. J. Lucas, D. Louer, and C. A. Angell, Mater. Sci. Forum 6, 449 (1985).
9. R. M. Almedia and J. D. Mackenzie, J. Chem. Phys. 74, 5954 (1981).
10. J. P. Laval, B. Frit, and J. Lucas, Mater. Sci. Forum 6, 457 (1985).
11. R. M. Almeida, J. Lau, and J. D. Mackenzie, Mater. Sci. Forum 19, 465 (1985).
12. G. Courbion, J. Guery, A. Le Bail, and C. Jacoboni, Mater. Sci. Forum 19, 739 (1985).
13. G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, J. Chem. Phys. 83(9), 4427 (1985).
14. R. Papiernik, D. Mercurio, and B. Frit, Acta Crystallogr. B 38, 2347 (1982).
15. J. P. Laval, R. Papiernik, and B. Frit, Acta Crystallogr. B 34, 1070 (1978).
16. B. Mehlhorn and R. Hoppe, Z. Anorg. Allg. Chem. 425, 180 (1976).
17. J. P. Laval, B. Frit, and B. Gaudreau, Rev. Chim. Mineral. 16, 509 (1979).
18. N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, Mater. Res. Bull. 19, 577 (1984).
19. G. F. Neilson, G. L. Smith, and M. C. Weinberg, Mater. Res. Bull. 19, 279 (1984).
20. W. J. Miniscalco, L. J. Andrews, B. T. Hall, and D. E. Guenther, Mater. Sci. Forum 5, 279 (1985).
21. J. M. Parker, A. G. Clare, and A. B. Seddon, Mater. Sci. Forum 5, 257 (1985).
22. G. M. Sheldrick, "SHELX 76, Program for crystal stmucture determination," Cambridge University (1976).
23. "International Tables for X-ray Cristallography," Vols. II and IV, Kynoch Press, Birmingham (1968).
24. I. Yasui and H. Inoue, J. Non-cryst. Solids 71, 39 (1985).
25. H. Inoue, H. Hasegawa, and I. Yasin, Phys. Chem. Glasses 26(3), 74 (1985).
26. B. Boulard, A. Le Bail, J. P. Laval, and C. Jacoboni, "Internat. Conf. on EXAFS, Fontevraud, France, 1986."
27. R. Papiernik and B. Frit, Mater. Res. Bull. 19, 509 (1984).
28. B. C. Tofield, M. Poulain, and J. Lucas, J. Solid State Chem. 27, 163 (1979).
29. M. Poulain, M. Poulain, and J. Lucas, J. Solid State Chem. 8, 132 (1973).
30. J. P. Lavai. and B. Frit, Acta Crystallogr. B 36(11), 2533 (1980).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

[^1]: ${ }^{a}$ For the Zr atom, the anisotropic coefficients are: $\beta_{11}=0.036(1), \beta_{22}$ $=0.018(1), \beta_{33}=0.014(1), \beta_{12}=0.007(1), \beta_{13}=0.013(1), \beta_{23}=0.016(1)$.

